The regasification of liquefied natural gas (LNG) is a crucial process that involves certain challenges created by the low temperature of LNG and the risk of ice formation on the external surfaces of the tubes of heat exchangers, which can hinder heat transfer and increase flow resistance. This study presents a numerical model for ice formation on the external surface of the U-bend tube of shell-and-tube heat exchangers. The numerical model has been further enhanced by applying a custom user-defined function. The numerical results were validated using experimental data and demonstrated excellent predictive capability, particularly for the surface temperature of the tubes and the thickness of the ice layer. Hence, this model can reliably capture the overall behavior of the ice formation on the external surfaces of the tubes of shell-and-tube heat exchangers. By highlighting the importance of maintaining stable heat transfer conditions to prevent freezing, this study offers valuable insights that can guide the optimization of heat exchanger designs for LNG regasification.