Telomerase is a reverse transcriptase that consists of the telomerase reverse transcriptase (TERT) protein and the telomerase RNA component TERC which also harbors the template region for telomere synthesis. In its canonical function the enzyme adds single-stranded telomeric hexanucleotides de novo to the ends of linear chromosomes, telomeres, in telomerase-positive cells such as germline, stem- and cancer cells. This potential biochemical activity of telomerase can be measured with the help of a telomerase repeat amplification protocol (TRAP) which often includes a PCR amplification due to the low abundance of telomerase in most cells and tissues. The current chapter describes various TRAP methods to detect telomerase activity (TA) using gel-based methods, its advantages and deficits, how to perform an ELISA-based TRAP assay and how best to interpret its results. Since development of the TRAP assay in 1994, there have been numerous modifications and adaptations of the method from real-time PCR analysis, isothermal amplification and nanotechnology to CRISPR/Cas-based methods which will be briefly mentioned. However, it is not possible to cover all different TRAP methods and thus there is no comprehensiveness claimed by this chapter. Instead, the author describes various aspects of using TRAP assays including required controls, sample preparation, etc. in order to avoid pitfalls and set-backs in applying this rather complex and demanding technique. The TRAP assay is particularly important to support clinical diagnosis of cancer, analyze tumor therapy as well as to evaluate various approaches to inhibit TA as a form of anti-cancer therapy.