For thousands of years forest fires played the role of a regulator in the ecosystem. Forest fires contributed to the ecological balance by destroying old and diseased plant material; but in the modern era fires are a major problem that tests the endurance not only of government agencies around the world, but also have an effect on climate change. Forest fires have become more intense, more destructive, and more deadly; these are known as megafires. They can cause major economic and ecological problems, especially in the summer months (dry season). However, humanity has developed a tool that can predict fire events, to detect them in time, but also to predict their duration. This tool is artificial intelligence, specifically, machine learning, which is one part of AI. Consequently, this paper briefly mentions several methods of machine learning as used in predicting forest fires and in early detection, submitting an overall review of current models. Our main overall objective is to venture into a new field: predicting the duration of ongoing forest fires. Our contribution offers a new way to manage forest fires, using accessible open data, available from the Hellenic Fire Service. In particular, we imported over 72,000 data from a 10-year period (2014–2023) using machine learning techniques. The experimental and validation results are more than encouraging, with Random Forest achieving the lowest value for the error range (8–13%), meaning it was 87–92% accurate on the prediction of forest fire duration. Finally, some future directions in which to extend this research are presented.