This study introduces an innovative wedge anchor for double-layer carbon fiber reinforced polymer (CFRP) plate cable to address the current limitation of traditional wedge anchors. By employing the design concept of "secondary force transmission path", the friction force for anchoring the CFRP plate is effectively transferred into the barrel through its contracting wedge, thus reducing the clamping pressure requirement of traditional wedge anchorage for anchoring thick or double-layer CFRP plates. Based on this conception, this study presents a theoretical analysis model for predicting the influence of parameter variations on the compressive stress of the CFRP plate, which can serve as a tool for rapid configuration preliminary design. Through finite element analysis, the internal stress distribution of the anchor is thoroughly investigated, and the theoretical analysis model for fast predicting compressive stress of CFRP plate is also validated. The results also indicate that the anchorage conception is valid and effective, providing sufficient anchorage of CFPR plates with an anchorage length of 100 mm.
Read full abstract