Despite efforts to prevent atypical ensiling conditions, such as delayed ensiling or sealing, these issues frequently occur in practice. This study aimed to investigate the effects of delayed ensiling (forage held for 24 h) and sealing, along with inoculation using a blend of Lentilactobacillus buchneri and Lactococcus lactis, on the characteristics of the resulting silages. Whole-plant maize (Zea mays L.) was treated with or without a commercial inoculant and ensiled (36% dry matter) for 60 days in 3.0 L glass containers. The forage was either ensiled immediately or subjected to a 24 h delay before ensiling. During the delay, the forage was either covered or left uncovered. Each treatment was replicated five times. All data were analyzed using the MIXED procedure of SAS statistical software (version 9.4; SAS Institute Inc., Cary, NC, USA). Delaying the ensiling process by 24 h worsens fermentation parameters, significantly increases dry matter (DM) losses (p < 0.01), and significantly reduces aerobic stability and the hygienic quality of the silage (p < 0.01), as evidenced by higher concentrations of undesirable fermentation products and elevated yeast and mold counts. The inoculation has a significant impact on both forage before ensiling and the characteristics of the resulting silage. Maize forage treated with inoculant showed a lower temperature increase by 8.2–8.1 °C (p < 0.01) when delayed for 24 h before ensiling. In silages, it also resulted in a reduced pH (p < 0.01); increased concentrations of lactic acid; acetic acid; and 1,2-propanediol (p < 0.01); and decreased levels of negative fermentation indicators such as ammonia-N, alcohols, and butyric acid (p < 0.01) During both the fermentation and aerobic exposure periods, inoculated silages exhibited up to 36% and 2.6 times lower (p < 0.01) dry matter loss, while suppressing the growth of yeasts and molds by up to 2.6 and 3.1 times (p < 0.01), respectively, compared to non-inoculated silages. The results of this study support the recommendation to minimize the duration of aerobic exposure of fresh forage during silo filling and to use LAB-based inoculants.