Owing to the critical role of follicle stimulating hormone receptor (FSHR) signaling in human reproduction, FSHR has been widely explored for development of fertility regulators. Using high-throughput screening approaches, several low molecular weight (LMW) compounds that can modulate FSHR activity have been identified. However, the information about the binding sites of these molecules on FSHR is not known. In the present study, we extracted the structural and functional information of 161 experimentally validated LMW FSHR modulators available in PubMed records. The potential FSHR binding sites for these modulators were identified through molecular docking experiments. The binding sites were further mapped to the agonist or antagonist activity reported for these molecules in literature. MD simulations were performed to evaluate the effect of ligand binding on conformational changes in the receptor, specifically the transmembrane domain. A peptidomimetic library was screened using these binding sites. Six peptidomimetics that interacted with the residues of transmembrane domain and extracellular loops were evaluated for binding activity using in vitro cAMP assay. Two of the six peptidomimetics exhibited positive allosteric modulatory activity and four peptidomimetics exhibited negative allosteric modulatory activity. All six peptidomimetics interacted with Asp521 of hFSHR(TMD). Several of the experimentally known LMW FSHR modulators also participated in H-bond interactions with Asp521, suggesting its important role in FSHR modulatory activity.
Read full abstract