Efficient drug delivery systems targeting cancer cells are crucial for enhancing cancer therapy. In this study, we developed PLGA nanoparticles coated with folate-conjugated chitosan (osthole-PLGA-NPs/CS-FA) to deliver osthole to cancer cells and investigated its inhibitory and molecular signaling mechanisms in the PANC-1 pancreatic cancer cell line. Field emission scanning electron microscopy (FESEM) revealed that osthole-PLGA-NPs/CS-FA had a spherical structure with a uniform size distribution. Dynamic light scattering (DLS) analysis showed an average size of 171.76 nm, a dispersion index 0.26, and a surface charge of + 33.08 mV, indicating stability and uniform dispersion. Fourier-transform infrared (FTIR) spectrum analysis confirmed the successful incorporation of osthole into the PLGA nanoparticles, with an encapsulation efficiency of 93.12 %. These physicochemical properties suggest efficient cellular uptake and targeted delivery. The antioxidant potential of osthole-PLGA-NPs/CS-FA was evaluated using the ABTS assay, showing concentration-dependent inhibition of free radicals with an IC50 value of 172.95 μg/mL. The anticancer properties were assessed using the MTT assay, demonstrating a significant and concentration-dependent cytotoxic effect on PANC-1 cells (IC50 = 31.2 μg/mL) with minimal impact on normal human foreskin fibroblast (HFF) cells. DAPI staining and flow cytometry analyses confirmed a concentration-dependent increase in apoptosis in PANC-1 cells. The nanoparticles induced upregulation of Bax and downregulation of Bcl2, indicating activation of the intrinsic mitochondrial apoptotic pathway. The anti-angiogenic activity of osthole-PLGA-NPs/CS-FA was evaluated using the chick chorioallantoic membrane (CAM) assay. The results showed significant inhibition of angiogenesis in a concentration-dependent manner, starting at 40 μg/mL and increasing up to 120 μg/mL. In conclusion, osthole-PLGA-NPs/CS-FA nanoparticles exhibit promising potential for targeted pancreatic cancer therapy by enhancing cellular uptake, inducing apoptosis, and inhibiting angiogenesis.
Read full abstract