The special terrain of Urumqi (in the valley area) often triggers strong foehn winds, causing huge losses to local people’s lives and social economies. By using the surface observation data of the hourly temperature, pressure, humidity, and wind from the downwind Urumqi Meteorological Station and the upwind Dabancheng Meteorological Station in the Middle Tianshan Canyon and the NCEP/NCAR reanalysis data during 2008–2022, this paper establishes the dataset of foehn processes at Urumqi Station in the past 15 years and analyzes the variation rules of the associated meteorological variables during the foehn processes. In addition, based on the physical mechanism of the occurrence of foehn, a three-element identification criterion (i.e., 94° ≤ 2 min average wind direction ≤ 168°, 2 min average wind speed ≥ 2.0 m/s, and Δθ between Urumqi station and Dabancheng station ≥ 0.29 K) for foehn in Urumqi is established by comparing and analyzing the variations of wind direction (WD), wind speed (WS), and the potential temperature difference (Δθ) between the two weather stations during the periods of foehn and non-foehn winds from 2013 to 2022. In addition, the performance of the three-element identification criterion is verified, and the results suggest that this criterion has an accuracy of 82.96% and a hit rate of 89.50% for the 2008–2012 foehn events in Urumqi. Moreover, the hit rate of this criterion for foehn wind of gale or above level (i.e., a 2 min wind ≥ 10.8 m/s on average) is 100%. In addition, combined with two predictors of sea-level pressure difference (ΔP) and Δθ between downwind stations and upwind stations, the foehn forecast can be more accurate than that provided by a single predictor. With ΔP ≤ −12 hPa and Δθ ≥ 5 K, the chances for foehn to occur are over 90%. This finding would have some reference and application values for the foehn forecasting.
Read full abstract