We show that the energy of a perturbed system can be fully recovered from the unperturbed system's electron density. We derive an alchemical integral transform by parametrizing space in terms of transmutations, the chain rule, and integration by parts. Within the radius of convergence, the zeroth order yields the energy expansion at all orders, restricting the textbook statement by Wigner that the p-th order wave function derivative is necessary to describe the (2p + 1)-th energy derivative. Without the need for derivatives of the electron density, this allows us to cover entire chemical neighborhoods from just one quantum calculation instead of single systems one by one. Numerical evidence presented indicates that predictive accuracy is achieved in the range of mHa for the harmonic oscillator or the Morse potential and in the range of machine accuracy for hydrogen-like atoms. Considering isoelectronic nuclear charge variations by one proton in all multi-electron atoms from He to Ne, alchemical integral transform based estimates of the relative energy deviate by only few mHa from corresponding Hartree-Fock reference numbers.
Read full abstract