More considerable power distortions are produced by the non-reversible diode-bridge rectifiers in the power system’s AC-DC conversion technology. In addition, bridge-rectifiers worsen energy quality and decrease power factor. Three-Phase Pulse Width Modulation (3phase-PWM) rectifiers have seen rapid growth in use due to recent breakthroughs in power device technology. Its benefits include a unity power factor, no harmonic distortion, and pulsating direct currents. An actual power regulation technique based on a novel virtual power grid controller is suggested to cheaply regulate a 3phase-PWM converter with good performance. The study introduces a new sensorless control scheme to improve the 3phase-PWM-performance rectifier. The proposed control technique employs the virtual power grid flux-oriented vector control with a Second-Order Generic Integral with Instantaneous Phase Lock Loop (SOGI-IPLL) to overcome the problems inherent in relying only on low-pass filter estimates. The virtual power grid flux value may then determine the phase difference. The IPLL takes the phase angle as an input and is utilized to construct the power-oriented vector control. The proposed power grid flux-oriented control strategy combines the VFidea with SOGI-IPLL to circumvent the restrictions imposed by relying only on an integrator of low-pass filters (LPF) to provide an estimate. A refined Virtual flux (VF) estimator with direct power control can improve management at a cheaper cost and more efficiently. The modeling findings demonstrate that the DC voltage input and power grid throughput of the 3phase-PWM rectifier can be successfully regulated in both the rectification and inversion states, allowing for the effective functioning of the 3phase-PWM rectifier.
Read full abstract