Herein, we report the synthesis and sensing characteristics of 4,4'-methoxy-substituted BODIPY fluorescent probes (O-BODIPYs) 3, 4 and 5 equipped with differently sized benzo-crown ethers (cf. Scheme 1, 3 (benzo-15-crown-5), 4 (benzo-18-crown-6) and 5 (benzo-21-crown7)). O-BODIPYs 3, 4 and 5 exhibited in comparison to their known F-BODIPY analogues 3a, 4a and 5a (cf. Scheme 1) an improved solubility in aqueous medium and higher fluorescence quantum yields. Fluorometric study in aqueous solutions of 3, 4 and 5 in the presence of different cations show cation induced fluorescence enhancements (FE). Compared to the benzo-crown ether substituted F-BODIPY analogues 3a, 4a and 5a, we found for the free O-BODIPYs 3, 4 and 5 higher fluorescence quantum yields (φf) but lower cation induced FEs. We show that in aqueous medium the fluorescence quenching process (OFF switching), a photoinduced electron transfer, in O-BODIPYs 3, 4 and 5 is less effective and consequently sensitive and selective ON switching of the fluorescence by cations, too. Albeit these observations the novel benzo-21-crown-7 equipped fluorescent probe 5 exhibits a good fluorometric Ba2+ selectivity and Ba2+ sensitivity in conjunction to their aqueous solubility.