The biologically active and thermally stable bivalent Co(II), Ni(II), Cu(II), and Zn(II) complexes (C1, C2, C3, and C4) of novel Schiff base ligand [(5-trifluoromethyl-2-methoxyphenylamino)methyl)-4,6-diiodophenol (L)] have been synthesized. The structural analysis of these complexes have been carried out by elemental analysis, 1H-NMR, FTIR, ESI mass, UV-visible, ESR, TGA techniques and magnetic measurements. The obtained results were confirmed as square planar geometry for Ni(II) and Cu(II) complexes, whereas octahedral geometry for Co(II) and Zn(II) complexes. The geometry optimized structures were developed by employing CHEM 3D software. The DNA binding interaction studies such as UV-vis absorption, viscosity, and fluorescence studies have been confirmed that the mode of binding of complexes with DNA is an intercalative binding. The DNA cleavage studies revealed that all the complexes are found to be potent to cleave the DNA into Form I & II. The in-vitro pathological studies of all the complexes against various microbial strains (Gram + and Gram -), revealed that Cu(II) complexes are more potent compared to other complexes and Schiff base. The anti diabetic activity studies revealed that the Cu(II) complex exhibited slightly higher activity than Co(II), Ni(II), and Zn(II) complexes. The results of antioxidant activity by DPPH method, suggested that the Cu(II) complex has higher activity and comparable with the standard compounds.