The specialized functions of eukaryotic organelles have motivated chemical approaches for their selective tagging and visualization. Here, we develop chemoenzymatic tools using metabolic labeling of abundant membrane lipids for selective visualization of organelle compartments. Synthetic choline analogues with three N-methyl substituents replaced with 2-azidoethyl and additional alkyl groups enabled the generation of corresponding derivatives of phosphatidylcholine (PC), a ubiquitous and abundant membrane phospholipid. Subsequent bioorthogonal tagging via the strain-promoted azide-alkyne cycloaddition (SPAAC) with a single cyclooctyne-fluorophore reagent enabled differential labeling of the endoplasmic reticulum, the Golgi complex, mitochondria, and lysosomes depending upon the substitution pattern at the choline ammonium center. Key to the success of this strategy was the harnessing of both the organic cation transporter OCT1 to enable cytosolic delivery of these cationic metabolic probes and endogenous phospholipase D enzymes for rapid, one-step metabolic conversion of the choline analogues to the desired lipid products. Detailed analysis of the trafficking kinetics of both the SPAAC-tagged fluorescent PC analogues and their non-fluorescent, azide-containing precursors revealed that the latter exhibit time-dependent differences in organelle selectivity, suggesting their use as probes for visualizing intracellular lipid transport pathways. By contrast, the stable localizations of the fluorescent PC analogues will allow applications not only for organelle-selective imaging but also for local modulation of physiological events with organelle-level precision by tethering of bioactive small molecules, via click chemistry, within defined subcellular membrane environments.