Attention deficit hyperactivity disorder (ADHD) is a neurological condition frequently identified in early childhood and frequently co-occurs with other neuropsychological disorders, particularly autism. Viloxazine hydrochloride, a non-stimulant medication, has recently gained approval for treating attention-deficit hyperactivity disorder. This paper describes the first spectrofluorimetric method for precisely measuring the content of viloxazine in pharmaceutical capsules and rat plasma. This method employed NBD-Cl (4-chloro-7-nitrobenzo-2-oxa-1,3-diazole) as a fluorescent probe, which transformed viloxazine in an alkaline environment into a remarkably sensitive fluorescent adduct. Upon excitation at 476 nm, this adduct becomes detectable at a wavelength of 536 nm. The method was validated using ICH criteria, revealing acceptable linearity across a concentration range of 200-2000 ng/ml and high sensitivity with LOD and LOQ values of 46.774 ng/ml and 141.741 ng/ml, respectively. This method was adeptly applied in a pharmacokinetic study of viloxazine in rat plasma following a single oral dose (10mg/kg), yielding a mean peak plasma concentration (Cmax) of 1721 ng/ml, achieved within 1.5h. Furthermore, the environmental impact of the technique was assessed using two greenness assessment tools, revealing a notable level of eco-friendliness and sustainability.
Read full abstract