We herein report a strategy for sensitive alkaline phosphatase (ALP) fluorescent sensing based on steric hindrance regulated supramolecular assembly between β-cyclodextrin polymer (polyβ-CD) and pyrene. The fluorescence of pyrene was enhanced more than 10 times through supramolecular assembly with polyβ-CD. The 5′-phosphorylated dsDNA probe with pyrene attached on the 3′-terminal could be cleaved by λ exonuclease (λ exo), yielding pyrene attached on mononucleotides. Pyrene attached on mononucleotides could easily enter the cavity of polyβ-CD, resulting in fluorescence enhancement. When ALP was introduced, it could remove 5′-phosphate groups from dsDNA and then prevented the cleavage of dsDNA. Pyrene attached on dsDNA was difficult to enter the cavity of polyβ-CD because of steric hindrance, resulting in an inconspicuous fluorescence enhancement. Owing to the excellent fluorescence enhancement during steric hindrance regulated supramolecular assembly, excellent performance of the assay method was achieved for ALP with a detection limit of 0.04UmL−1. The detection limit was superior or comparable with the reported methods. Besides, this method was simple in design, avoiding double-labeling of probe.
Read full abstract