The repressor element 1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) binds to repressor element 1/neuron-restrictive silencer element (RE1/NRSE) sites in the genome and recruits effector proteins to repress its target genes. Here, we developed the FlpTRAP system to isolate endogenously assembled DNA-protein complexes such as the REST/NRSF complex. In the FlpTRAP system, we take advantage of the step-arrest variant of the Flp recombinase, FlpH305L, which, in the presence of Flp recognition target (FRT) DNA, accumulates as FRT DNA-protein adduct. The FlpTRAP system consists of three elements: (i) FlpH305L-containing cell extracts or isolates, (ii) a cell line engineered to harbor the DNA motif of interest flanked by FRT sites, and (iii) affinity selection steps to isolate the target chromatin. Specifically, 3×FLAG-tagged FlpH305L was expressed in insect cell cultures infected with baculovirus, and cell lysates were prepared. The lysate was used to capture the FRT-SNAP25 RE1/NRSE-FRT chromatin from a human medulloblastoma cell line, and the target RE1/NRSE chromatin was isolated by anti-FLAG immunoaffinity chromatography. Using electrophoretic mobility shift assays (EMSAs) and chromatin immunopurification (ChIP), we show that FlpH305L recognized and bound to the FRT sites. Overall, we suggest the FlpTRAP system as a tool to purify endogenous, specific chromatin loci from eukaryotic cells.
Read full abstract