This study examines the synthesis of ZnO powder via the sol–gel method at temperatures of 25 °C and 60 °C. Characterization was conducted using standard techniques to investigate how these temperature conditions influence the physicochemical properties of the resulting material. XRD analysis confirmed high crystallinity with a pure hexagonal wurtzite structure, with average crystallite sizes of approximately 20 nm at 25 °C and 38 nm at 60 °C. Both SEM and TEM techniques established needle-like nanorods at 25 °C and nanoflower-like structures at 60 °C. Analyzing the high-resolution XPS spectra of the Zn2p and O1s photoelectron lines revealed a predominant Zn(II) state, with the contribution of ZnO increasing from 14.6 at.% to 41.6 at.% at higher temperatures. This change was accompanied by a decrease in defective oxygen and water content. Furthermore, DSC analysis revealed significant differences in thermal properties of ZnO powders synthesized at 25 °C and 60 °C, with distinct endothermic peaks around 120 °C corresponding to the evaporation of the solvent used in the synthesis process. The energy required for phase transitions was notably higher for the 25 °C synthesis, indicating greater thermal stability and energy demands compared to the 60 °C synthesis.
Read full abstract