Power batteries are the core power source for electric vehicles. However, battery thermal management technology for electric vehicles will face more severe challenges in the future. Flat heat pipe has gradually received much attention in the field of battery thermal management due to its high heat conduction coefficient and lightweight structure. This paper focuses on the influence of flat heat pipe structural parameters on battery thermo-electrical performance by establishing simulation model of the battery cooling system, which makes contribution to the flat heat pipe structure design on optimizing battery overall performance. Based on the mechanism of working medium flow effect of flat heat pipe on the battery electrochemical heat generation, a coupled model of flat heat pipe-based battery system is established according to the relationship between battery electrochemical heat generation performance and flat heat pipe heat transfer characteristics. The accuracy of system model is further verified by experiment, and the battery thermo-electrical characteristics under different discharging conditions is simulated. The flat heat pipe-based battery thermal management system can effectively reduce the battery maximum temperature while improving the uniformity of battery temperature and state of charge (SOC). The reduction of the vapor chamber thickness causes the uneven distribution of vapor thermal resistance, so the battery maximum temperature and maximum temperature difference will become larger, which will further cause the uneven distribution of battery internal resistance, and this will finally increase the non-uniformity of battery module discharging current distribution. A structural design method of the flat heat pipe-based battery thermal management system is developed with the battery thermo-electrical coupling performance as the design objective and the flat heat pipe structural parameters (total thickness, vapor chamber thickness, total length) as the optimization variables. Compared with the original scheme, the battery maximum temperature can be reduced by 6.4% under transient high-rate discharging conditions with the modified flat heat pipe based on the proposed design method, while the battery maximum temperature and SOC difference can also be reduced by 18.4% and 16.3%, respectively.
Read full abstract