Researchers in the field of vibration control have shown increasing interest in magneto-rheological dampers (MRDs) in recent years. Conventional flow-mode MRDs typically employ a gas chamber as an accumulator to accommodate volume changes and promote fluid communication. However, this approach introduces manufacturing complexities and raises production costs. To overcome these challenges, we propose a novel configuration for flow-mode MRDs that replaces the accumulator with a structural constraint. This modification leads to a more compact and cost-effective MRD solution suitable for engineering applications. This paper presents an introduction, followed by the configuration and design of the novel MRD for a case study involving a vehicle suspension system. To enhance output performance, we optimize the significant geometry of the damper using the finite element method (FEM), taking into account the damping force, off-state force, and inductive time constant of the damper. Based on the optimal simulation results, we provide a detailed design of the optimized flow-mode MRD without an accumulator for prototype fabrication. To assess the practical performance of the proposed MRD prototype, we conducted experiments on a test rig and engaged in comprehensive discussions based on the obtained results.
Read full abstract