Rice flour is a raw material for various foods and is used as a substitute for wheat flour. However, some merchants adulterate rice flour with the illegal additive Rongalite to extend the shelf life and earn illegal profits. Rongalite is highly carcinogenic, and ingestion of more than 10 g can even cause death. high-performance liquid chromatography (HPLC) and mass spectrometry (MS) are currently the main methods for detecting food adulteration, however, the existing methods have many limitations, complex operation, expensive instrumentation, etc. Raman spectroscopy has the advantages of convenience and non-destructive samples, but Raman spectroscopy can be affected by interference such as fluorescence background that affects detection, in addition to the problem of difficult quantitative analysis due to nonlinear bias. In this article, we used the preprocessing method of Savitzky-Golay smoothing filtering and VTPspline to improve the quality of the spectra and proposed the SARNet, which combines autoencoder and residual network to achieve the quantitative analysis of Rongalite content in rice flour. The new model combines a linear model with a nonlinear model, which can solve the nonlinear problem effectively. Experiments showed that the new SARNet model achieved state-of-the-art results, achieving the best R2 of 0.9703 and RMSEP of 0.0075. The lowest Rongalite concentration detected by the portable Raman spectrometer was 0.49%. In summary, the proposed method using portable Raman spectroscopy combined with machine learning has low detection bias and high accuracy, which can realize quantitative analyses of adulterated Rongalite in rice flour quickly. The method provides an accurate and nondestructive analytical tool in the field of food detection.
Read full abstract