ABSTRACTThe Northeast United States exhibits significant spatial heterogeneity in flood seasonality, with spring snowmelt‐driven floods historically dominating northern areas, while other regions show more varied flood seasonality. While it is well documented that since 1996 there has been a marked increase in extreme precipitation across this region, the response of flood seasonality to these changes in extreme precipitation and the spatial distribution of these effects remain uncertain. Here we show that, historically, snowmelt‐dominated northern regions were relatively insensitive to changes in extreme precipitation. However, with climate warming, the dominance of snowmelt floods is decreasing and thus the extreme flood regimes in northern regions are increasingly susceptible to changes in extreme precipitation. While extreme precipitation increased everywhere in the Northeastern United States in 1996, it has since returned to near pre‐1996 levels in the coastal north while remaining elevated in the inland north. Thus, the inland north region has and continues to experience the greatest changes in extreme flooding seasonality, including a substantial rise in floods outside the historical spring flood season, particularly in smaller watersheds. Further analysis reveals that while early winter floods are increasingly common, the magnitude of cold season floods (Nov‐May) have remained unchanged over time. In contrast, warm season floods (June‐Oct), historically less significant, are now increasing in both frequency and magnitude in the inland north. Our results highlight that treating the entire Northeast as a uniform hydroclimatic region conceals significant regional variations in extreme discharge trends and, more generally, climate warming will likely increase the sensitivity of historically snowmelt dominated watersheds to extreme precipitation. Understanding this spatial variability in increased extreme precipitation and increased sensitivity to extreme precipitation is crucial for enhancing disaster preparedness and refining water management strategies in affected regions.