Sugars play multiple critical roles in insects, serving as energy sources, carbon skeletons, osmolytes and signalling molecules. The transport of sugars from source to sink via membrane proteins is essential for the uptake, distribution and utilization of sugars across various tissues. Sugar supply and distribution are crucial for insect development, flight, diapause and reproduction. Insect sugar transporters (STs) share significant structural and functional similarities with those in mammals and other higher eukaryotes. However, they exhibit unique characteristics, including differential regulation, substrate selectivity and kinetics. Here, we have discussed structural diversity, evolutionary trends, expression dynamics, mechanisms of action and functional significance of insect STs. The sequence and structural diversity of insect STs, highlighted by the analysis of conserved domains and evolutionary patterns, underpins their functional differentiation and divergence. The review emphasizes the importance of STs in insect metabolism, physiology and stress tolerance. It also discusses how variations in transporter regulation, expression, selectivity and activity contribute to functional differences. Furthermore, we have underlined the potential and necessity of studying these mechanisms and roles to gain a deeper understanding of insect glycobiology. Understanding the regulation and function of sugar transporters is vital for comprehending insect metabolism and physiological potential. This review provides valuable insights into the diverse functionalities of insect STs and their significant roles in metabolism and physiology.