With the goal of engineering applications, the scalability and structural portability of elastic metasurfaces have become significant and attractive. However, most existing elastic metasurfaces cannot be arbitrarily scalable, which will inevitably limit their applications. Here, a novel conceptual design of ribbed elastic metasurfaces (REMs) is proposed for anomalous wavefront manipulation of flexural waves in thin plates. Ribbed subunits, as functional subunits of REMs, are characterized by simple constructions. The phase shift mechanism for the flexural waves across the ribbed subunits is revealed by analyzing the lowest dispersion bands. The analytical model for ribbed subunits is also established based on the equivalent orthotropic plate theory and transfer matrix method (TMM) to accurately predict the phase shift and amplitude of the transmitted waves. In addition, lateral scalability can be observed when the ratio of rib width to subunit width is constant, owing to the constant equivalent bending stiffness. By considering the lateral scalability of subunits, the continuous adjustment of the refraction angle can be perfectly achieved. The deflecting and focusing functionalities of the designed REMs are numerically and experimentally demonstrated. Both simulated and experimental results are consistent with theoretical results. Since ribbed plates are typical load-bearing structures in engineering, our design has broad application prospects, including but not limited to vibration control, energy harvesting, and structural health monitoring.
Read full abstract