Flexible quantum dot light-emitting diodes (QLEDs) show great promise for the next generation of flexible, wearable, and artificial intelligence display applications. However, the performance of flexible QLEDs still lags behind that of rigid substrate devices, hindering their commercialization for display applications. Here we report the superior performance of flexible QLEDs based on efficient red ZnCdSe/ZnS/ZnSe QDs (A-QDs) with anti-type-I nanostructures. We reveal that using ZnS as an intermediate shell can effectively confine the exciton wavefunction to the inner core, reducing the surface sensitivity of the QDs and maintaining its excellent emission properties. These flexible QLEDs exhibit a peak external quantum efficiency of 23.0% and a long lifetime of 63,050 h, respectively. The anti-type-I nanostructure of A-QDs in the device simultaneously suppresses defect-induced nonradiative recombination and balances carrier injection, achieving the most excellent performance of flexible QLEDs ever reported. This study provides new insights into achieving superior performance in flexible QD-based electroluminescent devices.