BackgroundYellow fever virus (YFV) and dengue virus (DENV) are among the major re-emerging arboviruses that pose a significant threat to public health. Their associated burden and prevalence can be substantially underestimated due to insufficient surveillance and inadequate diagnosis. This study aimed to determine evidence of dengue, yellow and related flaviviruses circulation among the rural human populations residing in Nguruman (Kajiado County) and Kerio Valley (Baringo County), two dryland ecosystems in the Kenyan Rift Valley.MethodsSerum samples obtained from febrile patients between 5 and 85 years through a hospital-based cross-sectional survey from July 2020 – May 2023, were screened for neutralizing antibodies to YFV, DENV-2 and related flaviviruses, West Nile virus (WNV) and Zika virus (ZIKV) via Plaque reduction neutralization test (PRNT). The study sites and important demographic characteristics were obtained using a structural questionnaire and the data analyzed and seroprevalence compared. A multinomial logistic regression model was done to predict risk for each of the most prevalent viruses with covariates; age, gender, and occupation.ResultsOverall, 54.5% (50.1–59.0% 95% confidence interval (CI) of the samples tested positive for at least one of the four Flaviviruses. The percentage was significantly higher in Kerio Valley (64.34%, 184/286) than in Nguruman (40.2%, 78/194) (P<0.0001). YFV had the highest prevalence, followed by WNV (16.25%), ZIKV (5.2%), and DENV-2 (1%). Kerio Valley had a significantly higher YFV seroprevalence (51%) than Nguruman (6%) (P<0.0001), while DENV-2 was observed only in Nguruman with a low seropositivity of 2%. In contrast to Nguruman, where seropositivity rates were higher in males at 47.47% (P=0.049), in Kerio Valley, females showed considerably higher viral seropositivity at 60.82% than males (P<0001).ConclusionThe study suggests that there is significant circulation of Flaviviruses in both regions, posing a public health risk, that could potentially contribute to clinical disease. However, seropositivity rates vary for each specific site. Furthermore, there could be a risk of YFV, WNV, and ZIKV transmission in both sites with DENV transmission specifically noted in Nguruman. The study findings inform direct cost-effective actions (such as YF vaccines) and precise surveillance data of vector populations for improved disease risk prediction.
Read full abstract