In this study, we conduct a thorough evaluation of the STGSA-generated skeletal mechanism for C2H4/air. Two STGSA-reduced mechanisms are taken into account, incorporating basic combustion models such as the homogeneous reactor model, one-dimensional flat premixed flame, and non-premixed counterflow flame. Subsequently, these models are applied to more complex combustion systems, considering factors like flame-flow interaction and flame-wall interaction. These considerations take into account additional physical parameters and processes such as mixing frequency and quenching. The results indicate that the skeletal mechanism adeptly captures the behavior of these complex combustion systems. However, it is suggested to incorporate strain rate considerations in generating the skeletal mechanism, especially when the combustion system operates under high turbulent intensity.