The widespread and complex formation of saline soils in China significantly affects the sustainable development of regional ecosystems. Intense climate changes and regional land use further exacerbate the uncertainties faced by ecosystems in saline areas. Therefore, studying the distribution characteristics of typical halophytic vegetation under the influence of climate change and human activities, and exploring their potential distribution areas, is crucial for maintaining ecological security in saline regions. This study focuses on Tamarix chinensis, Tamarix austromongolica, and Tamarix leptostachya, integrating geographic information systems, remote sensing, species distribution models, and landscape ecological risk (LER) theories and technologies. An optimized MaxEnt model was established using the ENMeval package, incorporating 143, 173, and 213 distribution records and 13 selected environmental variables to simulate the potential suitable habitats of these three Tamarix species. A quantitative assessment of the spatial characteristics and the area of their potential geographical distribution was conducted. Additionally, a landscape ecological risk assessment (LERA) of the highly suitable habitats of these three Tamarix species was performed using land use data from 1980 to 2020, and the results of the LERA were quantified using the Landscape Risk Index (LERI). The results showed that the suitable areas of Tamarix chinensis, Tamarix austromongolica, and Tamarix leptostachya were 9.09 × 105 km2, 6.03 × 105 km2, and 5.20 × 105 km2, respectively, and that the highly suitable habitats for the three species were concentrated in flat areas such as plains and basins. Tamarix austromongolica faced increasing ecological risk in 27.22% of its highly suitable habitat, concentrated in the northern region, followed by Tamarix chinensis in 16.70% of its area with increasing ecological risk, concentrated in the western and northern highly suitable habitats; Tamarix chinensis was the least affected, with an increase in ecological risk in only 1.38% of its area. This study provides valuable insights for the protection of halophytic vegetation, represented by Tamarix, in the context of China’s national land development.
Read full abstract