Lysophosphatidic acid (LPA) protects epithelial and fibroblast cell lines from apoptosis. In B-cells, LPA acts as a growth factor promoting cell proliferation. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD19+/CD5+ B-lymphocytes primarily through a block in apoptosis. The mechanisms underlying this defect are not fully understood. We investigated whether LPA could be a survival factor in CLL cells. Herein, we demonstrate that LPA protects B-cell lines BJAB and I-83 and primary CLL cells but not normal B-cells from fludarabine- and etoposide-induced apoptosis. Furthermore, LPA prevented spontaneous apoptosis in primary CLL cells. The LPA1 expression was found to be increased in primary CLL cells compared with normal B-cells correlating with LPA prevention of apoptosis. Treatment of primary CLL cells with the LPA receptor antagonist, diacylglycerol pyrophosphate, reverses the protective effect of LPA against apoptosis, and down-regulation of the LPA1 by siRNA blocked LPA-mediated protection against spontaneous apoptosis in primary CLL cells. The protective effect of LPA was inhibited by blocking activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. These results indicate that LPA is a survival factor in B-cell lines and primary CLL cells but not normal B-cells. Thus, drugs targeting the LPA receptors might be an effective therapy against B-cell-derived malignancies such as CLL.