Recently, alcohol-based draw solute (DS), i.e., alcohol with water, is one of the trending research topics in forward osmosis (FO) because of its performance and ease of regeneration. Nevertheless, the higher reverse solute flux (RSF) of the alcohol-based DS hinders its commercialization in water and wastewater treatment applications. This research aims to minimize the RSF of the alcohol-based DS in FO by investigating the possibility of using alcohol-alcohol-based draw solutes for the first time. Three alcohol-alcohol-based draw solutions, namely, (1) E70 + IPA30 (ethanol: 70% + isopropanol: 30%), (2) E40 + IPA60 (ethanol: 40% + isopropanol: 60%), and (3) E10 + IPA90 (ethanol: 10% + isopropanol: 90%), were prepared and the properties (including osmolality, shear stress, and viscosity) of the DS were first investigated followed by the parametric investigation (concerning temperature and concentration). The results were further analyzed with the fixed-point iterative method in MATLAB to obtain the performance parameters. Results reveal that the E10 + IPA90 mixture yields a lower RSF of 40.62g/m2/h and specific reverse solute flux of3.78g/L with a considerably good water flux and recovery percentage of 11.47 LMH and 26.29%, respectively, as compared to other DS E70 + IPA30 and E40 + IPA60 at 25°C. Thus, E10 + IPA90 is recommended as a potential candidate to be used as a DS in FO.
Read full abstract