Tomato waste, characterized by high organic matter and moisture content, offers a promising substrate for anaerobic digestion, though rapid acidification can inhibit methanogenic activity. This study investigated the performance of a 10.25 L anaerobic fixed biofilm reactor for biogas production using liquid tomato waste, processed through grinding and filtration, at high organic loading rates, without external pH control or co-digestion. Four scouring pads were vertically installed as a fixed bed within a fiberglass structure. Reactor performance and buffering capacity were assessed over three stages with progressively increasing organic loading rates (3.2, 4.35, and 6.26 gCOD/L·d). Methane yields of 0.419 LCH4/gCOD and 0.563 LCH4/g VS were achieved during the kinetic study following stabilization. Biogas production rates reached 1586 mL/h, 1804 mL/h, and 4117 mL/h across the three stages, with methane contents of 69%, 65%, and 72.3%, respectively. Partial alkalinity fluctuated, starting above 1500 mg CaCO3/L in Stage 1, dropping below 500 mg CaCO3/L in Stage 2, and surpassing 3000 mg CaCO3/L in Stage 3. Despite periods of forced acidification, the system demonstrated significant resilience and high buffering capacity, maintaining stability through hydraulic retention time adjustments without the need for external pH regulation. The key stability indicators identified include partial alkalinity, effluent chemical oxygen demand, pH, and one-day cumulative biogas. This study highlights the effectiveness of anaerobic fixed biofilm reactors in treating tomato waste and similar fruit and vegetable residues for sustainable biogas production.