We investigate changes in the shape of the averaged pulse profile in PSR B0355+54 (PSR J0358+5413) based on data obtained at the center frequency of 1250 MHz using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Our dataset consists of 12 non-consecutive observations, each lasting between 1 and 2 h. Considerable variation is observed in the averaged profiles across the observations even though each is folded from thousands of single pulses. Changes in the profile are measured through the ratio (R) between the peak intensities of the leading and trailing components. We find that the averaged pulse profile exhibits significant variation across observations, but distinctive from typical profile mode-changing. By dividing the frequency bandwidth into eight sub-bands, we demonstrate that the shape of the averaged profile undergoes significant evolution with frequency. In general, the changes in R across the sub-bands are different in different observations, but its value is uniform at low frequencies implying a more consistent emission. We demonstrate that the profile stabilization timescale for this pulsar is much longer than commonly suggested for ordinary pulsars, which is likely due to non-uniform and varying arrangement of the emission sources in the emission region.
Read full abstract