We recently constructed type-IIB compactifications to four dimensions depending on a single additional coordinate, where a five-form flux Φ on an internal torus leads to a constant string coupling. Supersymmetry is fully broken when the internal manifold includes a finite interval of length ℓ, which is spanned by a conformal coordinate in a finite range 0 < z < zm. Here we examine the low-lying bosonic spectra and their classical stability, paying special attention to self-adjoint boundary conditions. Special boundary conditions result in the emergence of zero modes, which are determined exactly by first-order equations. The different sectors of the spectrum can be related to Schrödinger operators on a finite interval, characterized by pairs of real constants μ and μ~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overset{\\sim }{\\mu } $$\\end{document}, with μ equal to 1/3 or 2/3 in all cases and different values of μ~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overset{\\sim }{\\mu } $$\\end{document}. The potentials behave as μ2−1/4z2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\frac{\\mu^2-1/4}{z^2} $$\\end{document} and μ~2−1/4zm−z2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\frac{{\\overset{\\sim }{\\mu}}^2-1/4}{{\\left({z}_m-z\\right)}^2} $$\\end{document} near the ends and can be closely approximated by exactly solvable trigonometric ones. With vanishing internal momenta, one can thus identify a wide range of boundary conditions granting perturbative stability, despite the intricacies that emerge in some sectors. For the Kaluza-Klein excitations of non-singlet vectors and scalars the Schrödinger systems couple pairs of fields, and the stability regions, which depend on the background, widen as the ratio Φ/ℓ4 decreases.
Read full abstract