Based on the five-dimensional Einstein–Maxwell theory, Bah et al. constructed a singularity-free topology star/black hole [Phys. Rev. Lett. 126, 151101 (2021)]. After performing the Kaluza–Klein reduction, i.e., integrating the extra space dimension, it can obtain an effective four-dimensional spherically static charged black hole with scalar hair. In this paper, we study the quasinormal modes (QNMs) of the scalar, electromagnetic, and gravitational fields in the background of this effective four-dimensional charged black hole. The radial parts of the perturbed fields all satisfy a Schrödinger-like equation. Using the asymptotic iteration method, we obtain the QNM frequencies semianalytically. For low-overtone QNMs, the results obtained using both the asymptotic iteration method and the Wentzel–Kramers–Brillouin approximation method agree well. In the null coordinates, the evolution of a Gaussian package is also studied. The QNM frequencies obtained by fitting the evolution data also agree well with the results obtained using the asymptotic iteration method.