In this work, we propose a modelling approach for the intra-granular fission gas behaviour in UO2 under restructuring process. Leveraging the definition of restructured volume fraction, we consider the fuel matrix transition from the non-restructured to the restructured phase, together with the evolution of the corresponding fission gas concentrations retained in the fuel matrix. Firstly, we derive a sweeping term that exchanges fission gas atoms from the non-restructured to the restructured fuel region. The sweeping term is then included in the conventional intra-granular fission gas diffusion problem. Secondly, the spectral diffusion algorithm is employed to solve two spatially-dimensionless problems, properly representing the non-restructured region with micrometric grains and the restructured region with sub-micrometric grains. The model developed is implemented in SCIANTIX, a 0D meso-scale code for physics-based modelling of fission gas behaviour in nuclear oxide fuel and compared with experimental data and semi-empirical models.
Read full abstract