Control of the movement of ions and water across epithelia is essential for homeostasis. Changing the number or activity of ion channels at the plasma membrane is a significant regulator of epithelial transport. In polarized epithelia, the intermediate-conductance calcium-activated potassium channel, KCa3.1 is delivered to the basolateral membrane where it generates and maintains the electrochemical gradients required for epithelial transport. The mechanisms that control the delivery of KCa3.1 to the basolateral membrane are still emerging. Herein, we investigated the role of the highly conserved tethering complex exocyst. In epithelia, exocyst is involved in the tethering of post-Golgi secretory vesicles with the basolateral membrane, which is required before membrane fusion. In our Fisher rat thyroid cell line that stably expresses KCa3.1, siRNA knockdown of either of the exocyst subunits Sec3, Sec6, or Sec8 significantly decreased KCa3.1-specific current. In addition, knockdown of exocyst complex subunits significantly reduced the basolateral membrane protein level of KCa3.1. Finally, co-immunoprecipitation experiments suggest associations between Sec6 and KCa3.1, but not between Sec8 and KCa3.1. Collectively, based on these data and our previous studies, we suggest that components of exocyst complex are crucially important in the tethering of KCa3.1 to the basolateral membrane. After which, Soluble N-ethylmaleimide-sensitive factor (SNF) Attachment Receptors (SNARE) proteins aid in the insertion of KCa3.1-containing vesicles into the basolateral membrane of polarized epithelia.NEW & NOTEWORTHY Our Ussing chamber and immunoblot experiments demonstrate that when subunits of the exocyst complex were transiently knocked down, this significantly reduced the basolateral population and functional expression of KCa3.1. These data suggest, combined with our protein association experiments, that the exocyst complex regulates the tethering of KCa3.1-containing vesicles to the basolateral membrane prior to the SNARE-dependent insertion of channels into the basolateral membrane of epithelial cells.
Read full abstract