Randomization-based inference using the Fisher randomization test allows for the computation of Fisher-exact P-values, making it an attractive option for the analysis of small, randomized experiments with non-normal outcomes. Two common test statistics used to perform Fisher randomization tests are the difference-in-means between the treatment and control groups and the covariate-adjusted version of the difference-in-means using analysis of covariance. Modern computing allows for fast computation of the Fisher-exact P-value, but confidence intervals have typically been obtained by inverting the Fisher randomization test over a range of possible effect sizes. The test inversion procedure is computationally expensive, limiting the usage of randomization-based inference in applied work. A recent paper by Zhu and Liu developed a closed form expression for the randomization-based confidence interval using the difference-in-means statistic. We develop an important extension of Zhu and Liu to obtain a closed form expression for the randomization-based covariate-adjusted confidence interval and give practitioners a sufficiency condition that can be checked using observed data and that guarantees that these confidence intervals have correct coverage. Simulations show that our procedure generates randomization-based covariate-adjusted confidence intervals that are robust to non-normality and that can be calculated in nearly the same time as it takes to calculate the Fisher-exact P-value, thus removing the computational barrier to performing randomization-based inference when adjusting for covariates. We also demonstrate our method on a re-analysis of phase I clinical trial data.
Read full abstract