The caudal fin is a major source of thrust generation in fish locomotion. Along with the fin stiffness, the stiffness of the joint connecting the fish body to the tail plays a major role in the generation of thrust. This paper investigates the combined effect of fin and joint flexibility on propulsive performance using theoretical and experimental studies. For this study, fluid–structure interaction of the fin has been modeled using the 2D unsteady panel method coupled with nonlinear Euler–Bernoulli beam theory. The compliant joint has been modeled as a torsional spring at the leading edge of the fin. A comparison of self-propelled speed and efficiency with parameters such as heaving and pitching amplitude, oscillation frequency, flexibility of the fin and the compliant joint is reported. The model also predicts the optimized stiffnesses of the compliant joint and the fin for maximum efficiency. Experiments have been carried out to determine the effect of fin and joint stiffness on propulsive performance. Digital image correlation has been used to measure the deformation of the fins and the measured deformation is coupled with the hydrodynamic model to predict the performance. The predicted theoretical performance behavior closely matches the experimental values.
Read full abstract