Imagine a scenario where you are cooking and suddenly, the contents of the pot start to come out, and the oven bell rings. You would have to stop what you are doing and start responding to the changing demands, switching between different objects, operations and mental sets. This ability is known as cognitive flexibility. Now, add to this scenario a strong emotional atmosphere that invades you as you spontaneously recall a difficult situation you had that morning. How would you behave? Recent studies suggest that emotional states do modulate cognitive flexibility, but these findings are still controversial. Moreover, there is a lack of evidence regarding the underlying brain processes. The purpose of the present study was, therefore, to examine such interaction while monitoring changes in ongoing cortical activity using EEG. In order to answer this question, we used two musical stimuli to induce emotional states (positive/high arousal/open stance and negative/high arousal/closed stance). Twenty-nine participants performed two blocks of the Madrid Card Sorting Task in a neutral silence condition and then four blocks while listening to the counterbalanced musical stimuli. To explore this interaction, we used a combination of first-person (micro-phenomenological interview) and third-person (behavior and EEG) approaches. Our results show that compared to the positive stimuli and silence condition, negative stimuli decrease reaction times (RTs) for the shift signal. Our data show that the valance of the first emotional block is determinant in the RTs of the subsequent blocks. Additionally, the analysis of the micro-phenomenological interview and the integration of first- and third-person data show that the emotional disposition generated by the music could facilitate task performance for some participants or hamper it for others, independently of its emotional valence. When the emotional disposition hampered task execution, RTs were slower, and the P300 potential showed a reduced amplitude compared to the facilitated condition. These findings show that the interaction between emotion and cognitive flexibility is more complex than previously thought and points to a new way of understanding the underlying mechanisms by incorporating an in-depth analysis of individual subjective experience.
Read full abstract