Lightning-induced forest fires frequently inflict substantial damage on forest ecosystems, with the Daxing’anling region in northern China recognized as a high-incidence region for such phenomena. To elucidate the occurrence patterns of forest fires caused by lightning and to prevent such fires, this study employs a multifaceted approach, including statistical analysis, kernel density estimation, and spatial autocorrelation analysis, to conduct a comprehensive examination of the spatiotemporal distribution patterns of lightning-induced forest fires in the Greater Khingan Mountains region from 2016–2020. Additionally, the geographical detector method is utilized to assess the explanatory power of three main factors: climate, topography, and fuel characteristics associated with these fires, encompassing both univariate and interaction detections. Furthermore, a mixed-methods approach is adopted, integrating the Zhengfei Wang model with a three-dimensional cellular automaton to simulate the spread of lightning-induced forest fire events, which is further validated through rigorous quantitative verification. The principal findings are as follows: (1) Spatiotemporal Distribution of Lightning-Induced Forest Fires: Interannual variability reveals pronounced fluctuations in the incidence of lightning-induced forest fires. The monthly concentration of incidents is most significant in May, July, and August, demonstrating an upward trajectory. In terms of temporal distribution, fire occurrences are predominantly concentrated between 1:00 PM and 5:00 PM, conforming to a normal distribution pattern. Spatially, higher incidences of fires are observed in the western and northwestern regions, while the eastern and southeastern areas exhibit reduced rates. At the township level, significant spatial autocorrelation indicates that Xing’an Town represents a prominent hotspot (p = 0.001), whereas Oupu Town is identified as a significant cold spot (p = 0.05). (2) Determinants of the Spatiotemporal Distribution of Lightning-Induced Forest Fires: The spatiotemporal distribution of lightning-induced forest fires is influenced by a multitude of factors. Univariate analysis reveals that the explanatory power of these factors varies significantly, with climatic factors exerting the most substantial influence, followed by topographic and fuel characteristics. Interaction factor analysis indicates that the interactive effects of climatic variables are notably more pronounced than those of fuel and topographical factors. (3) Three-Dimensional Cellular Automaton Fire Simulation Based on the Zhengfei Wang Model: This investigation integrates the fire spread principles from the Zhengfei Wang model into a three-dimensional cellular automaton framework to simulate the dynamic behavior of lightning-induced forest fires. Through quantitative validation against empirical fire events, the model demonstrates an accuracy rate of 83.54% in forecasting the affected fire zones.
Read full abstract