The pine cones (PC), spruce cones (SC) and fir cones (FC) were used for biocarbons preparation. Chemical activation with sodium hydroxide was applied to prepare activated biocarbons. All the materials under investigation were characterized by the N2 adsorption, scanning electron microscopy (SEM), elemental analysis (CHNS), infrared spectroscopy (ATR FT-IR), and the Boehm's titration method. Moreover, pHpzc (the point of zero charge) was determined. It was shown that cones are a good, cheap precursor from which biocarbons with a developed porous structure, characterized by good adsorption properties, can be obtained. All the obtained adsorbents are characterized mainly by a microporous structure. Moreover, they contain both acidic and basic surface functional groups (acidic ones prevail over basic ones). The tested activated biocarbons have large specific surface area values ranging from 578 to 1182 m2 g-1. The efficacy of selected materials in the adsorption of an essential contaminant of increasing concern, tetracycline (TC), was investigated. The experimental data were described using the Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of the tested biocarbons ranges from 200 to 392 mg g-1. Thermodynamic studies proved that adsorption is a spontaneous and endothermic process. In summary, economical and environmentally friendly adsorbents were obtained.