Hydrous minerals play a critical role in modifying the physical and chemical properties of the Earth’s interior. Among those, epidote is an important hydrous mineral in greenschist and blueschist phases of the metamorphosed subducting crust at shallow depth (30-60 km). Here, we measured the compressional (P) and shear (S) wave velocities of a polycrystalline epidote sample at pressures up to 7 GPa and room temperature by means of ultrasonic interferometry. The obtained sound velocities and elastic moduli of epidote increase monotonically with pressure. Finite strain analysis on those data set yielded the elastic moduli and their pressure derivatives of epidote at ambient condition as follows: KS0=115.2GPa, G0=66.7GPa, Ks′=4.6, G′=1.1. Using the elastic properties of epidote, we set up a model to better understand the velocity jumps in the subducted oceanic crusts concerning the blueschist-eclogite transition at 60-90 km depths. Our results indicate that the calculated P and S wave velocity jumps are in good agreement with those seismic observations in the typical subduction zones such as northeastern Japan and southwestern Japan. The eclogitization from epidote bearing blueschist may provide an explanation for the wave velocity anomalies occurred in those regions.
Read full abstract