We perform a complete spectral analysis of the linear three-dimensional Boltzmann BGK operator resulting in an explicit transcendental equation for the eigenvalues. Using the theory of finite-rank perturbations, we confirm the existence of a critical wave number kcrit\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$k_{\ extrm{crit}}$$\\end{document} which limits the number of hydrodynamic modes in the frequency space. This implies that there are only finitely many isolated eigenvalues above the essential spectrum at each wave number, thus showing the existence of a finite-dimensional, well-separated linear hydrodynamic manifold as a combination of invariant eigenspaces. The obtained results can serve as a benchmark for validating approximate theories of hydrodynamic closures and moment methods and provides the basis for the spectral closure operator.