In this paper, we use the Gauss–Jacobi quadrature formula to get an approximate solution for a finite part singular integral equation. The zeros of Jacobi polynomials and Jacobi functions of the second kind are used to construct a square system of algebraic equations which yield an interpolating function for the regular part of the solution of the singular integral equation. In a special case, another approach consists in converting the finite part singular integral equation to a Fredholm integral equation of the second kind using the analytical solution of a simple finite part singular integral equation. To simplify the calculation of kernel and right-hand side of the obtained Fredholm equation, we use the new polynomials $$J_n(x)$$, which admit a recurrence relation. The equivalent form of the integral equation in the last case is used to investigate the error bound of the approximated solution.
Read full abstract