We bring out upper bounds for the orders of Abelian subgroups in finite simple groups. (For alternating and classical groups, these estimates are, or are nearly, exact.) Precisely, the following result, Theorem A, is proved. Let G be a non-Abelian finite simple group and G $$\tilde \ne $$ L2 (q), where q=pt for some prime number p. Suppose A is an Abelian subgroup of G. Then |A|3<|G|. Our proof is based on a classification of finite simple groups. As a consequence we obtain Theorem B, which states that a non-Abelian finite simple group G can be represented as ABA, where A and B are its Abelian subgroups, iff G≌ L2(2t) for some t ≥ 2; moreover, |A|-2t+1, |B|=2t, and A is cyclic and B an elementary 2-group.