A problem for solving mass balances in mineral processing plants is the calculation of circulating load in closed circuits. A family of possible methods for the resolution of these calculations is the iterative method, consisting of a finite loop where in each iteration the initial solution is refined in order to approach the exact solution. The present work presents a low-complexity iterative algorithm for circulating load calculation in mineral processing closed circuits, thus enabling the construction of reliable mass, metallurgical and water balances. The proposed equations on the algorithm were obtained through the analysis of many industrial systems, taking into account the process operational parameters. A validation was performed with real industrial data, in order to ensure a greater reliability of the obtained results. Two different types of closed circuits are presented, each one with different levels of complexity, to clarify the proposed algorithm. With the results, it is possible to affirm that the proposed iterative algorithm can be successfully applied to any kind of closed circuit in mineral processing. The results were satisfactory with respect to processing speed, convergence of the solution and the number of iterations required for the circulating load calculation.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access