This paper explores range and bearing angle regulation of a leader–follower using monocular vision. The main challenge is that monocular vision does not directly provide a range measurement. The contribution is a novel concurrent learning (CL) approach, called CL Subtended Angle and Bearing Estimator for Relative pose (CL-SABER), which achieves range regulation without communication, persistency of excitation or known geometry and is demonstrated on a physical, robot platform. A history stack estimates target size which augments the Kalman filter (KF) with a range pseudomeasurement. The target is followed to scale without drift, persistency of excitation requirements, prior knowledge, or additional measurements. Finite excitation is required to achieve parameter convergence and perform steady-state regulation using CL-SABER. Evaluation using simulation and mobile robot experiments in special Euclidean planar space (SE(2)) show that the new method provides stable and consistent range regulation, as demonstrated by the inter-rater reliability, including in noisy and high leader acceleration environments.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access