The oxidation-induced self-healing of cracks is an attractive function for the application of ceramics in high-temperature structural components requiring high reliability. To further optimize materials or components for practical applications, the development of numerical simulation techniques is of importance. In this study, we examined crack growth, crack-gap-filling by oxide, and re-cracking behaviors in chevron-notched specimens under various load and temperature conditions by adopting a finite element analysis (FEA) approach incorporating a damage-healing constitutive model based on fracture mechanics and oxidation kinetics. Furthermore, by implementing the mechanical properties and oxidation kinetic parameters of reported self-healing ceramics composites into the FEA, we examined the effects of the composition and composite structure on the cracking and healing behaviors. Crack-gap-filling simulations suggested that the damage variables gradually decreased from the crack tip, and the minimum healing time was determined by the time required for the complete filling of the element at the crack mouth with the largest crack opening width. Furthermore, the recovery of the stiffness and strength could be successfully reproduced after complete healing with a reasonable healing temperature and time. The proposed FEA approach could also contribute to estimating the minimum healing time required at various temperatures to heal a given damage for various composites.
Read full abstract