We study the problem of normal oscillations of a homogeneous mixture of several viscous compressible fluids that fills a bounded domain in three-dimensional space with infinitely smooth boundary. We prove that the essential spectrum of the problem is a finite set of segments located on the real axis. The remaining spectrum consists of isolated eigenvalues of finite algebraic multiplicity and is located on the real axis, with the possible exception of finitely many complex conjugate eigenvalues. The spectrum of the problem contains a subsequence of eigenvalues with a limit point at infinity and a power-law asymptotic distribution.
Read full abstract