Abstract A companion paper by Fritts et al. reviews extensive evidence for Kelvin–Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics at multiple altitudes in the atmosphere and in the oceans that reveal these dynamics to be widespread. A second companion paper by Fritts and Wang reveals KHI T&K events at larger and smaller scales to arise on multiple highly stratified sheets in a direct numerical simulation (DNS) of idealized, multiscale gravity wave–fine structure interactions. These studies reveal the diverse environments in which KHI T&K dynamics arise and suggest their potentially ubiquitous occurrence throughout the atmosphere and oceans. This paper describes a DNS of multiple KHI evolutions in wide and narrow domains enabling and excluding T&K dynamics. These DNSs employ common initial conditions but are performed for decreasing Reynolds numbers (Re) to explore whether T&K dynamics enable enhanced KHI-induced turbulence where it would be weaker or not otherwise occur. The major results are that KHI T&K dynamics extend elevated turbulence intensities and energy dissipation rates ε to smaller Re. We expect these results to have important implications for improving parameterizations of KHI-induced turbulence in the atmosphere and oceans. Significance Statement Turbulence due to small-scale shear flows plays important roles in the structure and variability of the atmosphere and oceans extending to large spatial and temporal scales. New modeling reveals that enhanced turbulence accompanies Kelvin–Helmholtz instabilities (KHIs) that arise on unstable shear layers and exhibit what were initially described as “tubes” and “knots” (T&K) when they were first observed in early laboratory experiments. We perform new modeling to explore two further aspects of these dynamics: 1) can KHI T&K dynamics increase turbulence intensities compared to KHI without T&K dynamics for the same initial fields and 2) can KHI T&K dynamics enable elevated turbulence and energy dissipation extending to more viscous flows? We show here that the answer to both questions is yes.
Read full abstract