Ranging plays a crucial role in many wireless sensing applications. Among the wireless techniques employed for ranging, Ultra-Wideband (UWB) has received much attention due to its excellent performance and widespread integration into consumer-level electronics. However, the ranging accuracy of the current UWB systems is limited to the centimeter level due to bandwidth limitation, hindering their use for applications that require a very high resolution. This paper proposes a novel system that achieves sub-millimeter-level ranging accuracy on commercial UWB devices for the first time. Our approach leverages the fine-grained phase information of commercial UWB devices. To eliminate the phase drift, we design a fine-grained phase recovery method by utilizing the bi-directional messages in UWB two-way ranging. We further present a dual-frequency switching method to resolve phase ambiguity. Building upon this, we design and implement the ranging system on commercial UWB modules. Extensive experiments demonstrate that our system achieves a median ranging error of just 0.77 mm, reducing the error by 96.54% compared to the state-of-the-art method. We also present three real-life applications to showcase the fine-grained sensing capabilities of our system, including i) smart speaker control, ii) free-style user handwriting, and iii) 3D tracking for virtual-reality (VR) controllers.